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VISCOSITY OF A DILUTE SUSPENSION OF RIGID SPHERICAL PARTICLES 

IN A NON-NEWTONIAN FLUID 

Yu. I. Shmakov and L. M. Shmakova UDC 532.135 

Consider the perturbations introduced by a rigid spherical particle of radius a suspended 
in a non-Newl:onian fluid flow having a parallel velocity gradient 

vx = --(q/2)x, .  vv = - - (q/2)g,  v~ = qz (i) 

a n d  s a t i s f y i n g  t h e  O s t w a l d - - D e v i l l e  l a w  

P = - - P E + m ( l / 2 ) ( n - i ) / 2 S .  (2) 

where Vx, Vy~ v z are the velocity components in a Cartesian coordinate system Oxyz with ori- 
gin at the center of the particle; q is the constant; P is the stress tensor; S is the strain 

rate tensor with components Sij = ~vi/3x j + ~vj/3xi, i, j = i, 2, 3; I is the second invari- 

ant of the tensor S; p is the pressure, E is the unit tensor, m is the consistency index; and 
n is the index of non-Newtonian behavior. 

Transforming to a spherical coordinate system (r, 8, ~), we introduce the stream func- 
tion ~(r, e), which is related to the velocity components by the expressions 

t o~ l o~ ( 3 )  
V r =  r2s in0  0 9 '  ~0 ~ r s i n 0  0--7"" 

Now the equations of motion for a power-law fluid are written as follows, neglecting.inertial 
forces (the generalized Reynolds number with respect to the particle is small): 

n- 1 
Op [ / )  2 [ ~ O n - -  [ ( 3Vr Oln[ t ( 0 UO, [ OOr" ] OIn['[] 
O~7=m(V,', k " r~s in0  ~ E 2 ~ @  " @ Or Or ] 7 \r-5-i'r'7-~ ; ~J--gg--j]' 

~-I (4) 

where 

E 2 _  0 z sinO 0 ( i  ~ 0 )  
0~'~ ~ r" O0 s - i - ~  ' 

a n d  t h e  boundary c o n d i t i o n s  f o r  t h e  p r o b l e m  a s s u m e  t h e  f o r m  

v0 ----v r = 0 at r = a ;  ( 5 )  

v. = (qr/2)(2 cos"0 - - s in~O) ,  v0 = --(3qr/2) s in  0 co~ 0 as r --~ co. 

Let (n --!)/2 << I (the dispersion medium differs only slightly from a Newtonian fluid). 
Equations (4) can be linearized in this case. Transforming in (4) and (5) to the dimension- 
less variables r = r/a, v r = Vr/aq, v 8 = vs/aq, p = p/p= (p~ is the freestream pressure), ~ = 
~/a3q, ~ = I / 3 q  2 ,  we look for a solution of problem (4)-(5) in the form of asymptotic expan- 
sions in powers of the small parameter ~ = (n- 1)/2: 

~ =*0 + ~'i + ~_ + �9 . , 

P = P o - -  spl =- ~"p~ + . . . ,  
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v,. = v,. + + §  

30 = 7/g > + g%) + ++V+ I + . . . ,  

In the zeroth approximation the equations of motion take the form 

Or "~ r 2sinO 08 

Op-o '1 a E~Tp ~ (6)  
= sin 0 dr  

and differ from the equations of motion for a Newtonian fluid by the presence of the factor 
B -- p~/mqn3(n-*)/2. Eliminating the pressure from (6), we arrive at the following boundary- 
value problem for the determination of ~o : 

E~%=0;%=a%/ar=0 for r---- I; 

0% _ 3r 2 s i n 2 0 c o s O ,  Or 7 3 _ ( 7 )  Or 2 "T6- = - -  - 5  (2 cos ~ 0 - -  s in  2 0) s in  0 for r ~ oo. 

In the first approximation we deduce the equations 

B 0~lor = r 2 sint 0 a0~ E % 1  - -  In -if- r ~ sin 0 00 

~  ~ o lnTo + l ( r O  7(o ~ ~ ~ : ~  o Inl0 +2 
Or 0-~ 7 ~ O r - 7  + =r O0 / oo ' 

(8) 

? a0 ~ -= r s in0  Or r s i n 0  aT 
, _ ) + ( 7 •  + '  o,,,7o ~ 

Or r =r 0O / - - 0 7  + r'-- \---g0- + $~o) o i,a070 

along with the boundary conditions 

~i ~ O~l/Or = 0 for r == '1; O{~i/or < O(r).= (9) 

01h ' / o 0 <  0(r2), P l  = 0 as r - +  oo. 

The boundary-value problem (7) has a solution corresponding to Newtonian fluid flow with 
the velocity components (i) past a rigid spherical particle 

% = - - - E  I r 2~ 2~  s i n ~ 0 c ~  (I0) 

Hence 

,TT (ii) 

7 o--2+@(4-18sin 2 0 + 1 5 s i n  4 0 ) -  

_3(8_40sin 2 0 @ 3 5 s i n  40) ~- 25 i r ~ ~ T ~ - ( 4 - -  9 s i n 2 0  + 6 s i n 4 0 ) -  

= 3 i 30 (4 - -  8 s in  20 + 5 s in  ~ 0) + 7 ~-~ (48 - -  80 s in  ~ 0 + 45 s in  ~ 0 ) .  
1-8 

(12) 

(13) 

Integrating (6) under the boundary condition po = i as r -> ~, we find 

5 t ( 3 c o s 2 0 _  t ) .  ( 1 4 )  Po = '1 YB 78 

Representing In(~o/2) by an asymptotic expansion in powers of l/r, eliminating the pres- 
sure p, in (8), and making use of (i0)-(12), we obtain an equation for the determination of 

~x in the form 
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o~ 

E*~x = ~ F~ (7) sin2~O �9 co~ O, (15) 

where F s (~) 
tion, namely polynomials in i/r. 

We seek the solution of problem (15), (9) in the form 
~o 

~x = E /s (1") sin2S0 - cos 0. (16) 

Substituting (16) into (15), we obtain an infinite system of ordinary differential equations 
for the determination of fs(~), 

"~dr 4 r"- dr:" r a d r  r 4 " 

+ 8s (s + 1) [ J,.~_ &. d2 ~2 ~ 2~ m~-' 3) ]/S+~ (r) + = ~  i 

- 7  1 6 s ( s - -  i ) = ( s + 2 ) §  . . . .  , 
T~ "~+~ (~) = & (7), s = t 2, 3, (17) 

a l o n g  w i t h  t h e  f o l l o w i n g  b o u n d a r y  c o n d i t i o n s  b a s e d  on ( 9 ) :  
--o \ L(7) = ~:/~(,.)',m.=o fo~ 7 =  .J;/AT) < 0(,.-j, (18) 

di.(r) 'dr < 0(~') as T-->- co, s = :1, 2, 3 . . . . .  

denotes functions known from the solution of the problem in the zeroth approxima- 

We wish to find an approximate solution of problem (15), (9) that will enable us to 
evaluate the velocity components v (x) and v~ I) up to terms of order 0(i/r=). An analysis 
shows that it is required to solve five equations of the system (17), where the fourth equa- 
tion does not contain f6(~) and the fifth does not contain fn(r) and fT(~). These facts make 
it possible to find fs(~) by solving the fifth equation, and then fu(~), f3(~), f=(r), and 
f1(r) by solving the remaining equations in succession. It is necessary to find f,(~) and 
fs(~) < 0(i/~ 2) in order to determine the integration constants entering into the general 
solutions of the homogeneous equations for s = 1 and 2. The general solutions of the homo- 
geneous equations of the system (17) have the form 

/, ( r )  - -  c l  , c:j 1 . . . .  c i  I , 

where c is (i = i, 2, 3, 4; s = i, 2, 3, ...) denotes the constant of integration. The particu- 
lar solutions of the inhomogeneous equations of the system are determined by the form of the 
functions Fs(~); the first five of these are 

F~(r) = i5.  tl 't~r ~ - -  15.232.~ - -  225.I67/2r  7, 

F.,(r) = - -15 .483 / r  ~ + t5.  1039,~ 6 + 225.206t/2-r ~, (19)  

F3~) = i5 .855 . '2 .~  -- i5 . i839: '2~ 225.3429/ff, 

F~(~) = 225.43501r', F5(r ) ---- --225.'1875/~. 

form 
The solution of the boundary-value problem (17)-(19) in the given approximation has the 

/ l  = A1 + A ,  In r; /., = A3; /3 = .4.~ ( 2 0 )  
(A 1 = 5.70027/64.49-33,  A2 = - - t 5 / t 4 ,  A~ = --309/56, A4 = 475/i12). 

Using (20)~ (16), and (3), we obtain 

-~'1 = [(A1 -}- A~ l n r )  sin20 + A3sin~0 + Aa sin~0] cos 8; 

v(2 a~ - (21) = ~ [ l n r  ( t - -  3cos20) + 0(1)1; 
I '"  

v~ ~) = A--2-~ sin 20. (22)  
2r  2 

Solving Eqs. (8) in the given approximation, we find the pressure distribution 

P1 = (2/B-#') [ In 51 - -  3 co.~20) + 0(1)]. (23)  

On the basis of the final solution (11), (12), (14), (21)-(23) we determine the effec- 
tive viscosity of the suspension, invoking the Einstein energy method [!, 2]. In determining 
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the dissipation of mechanical energy in the neighborhood of the particle [the solution (21)- 
(23) being known only at points far from the surface of the particle], we follow a procedure 
similar to Jeffery's [3], i.e., determine the mechanical energy dissipation in the volume 
bounded by a spherical surface o of radius R in terms of the power of the surface forces ap- 
plied to that surface: 

, ,  = i t" ( P ~ ,  + P~o~o) d~. (24) 

Calculating the components Prr and PrO of the stress tensor (2) and inserting them into 
(24), we obtain 

W = w/V, = m7~+:3(~+:>/2[1 + 49/2 --  s49 in 49 + 0(e49)1, ( 2 5 )  

where V, is the volume bounded by the surface o. 

On the other hand, the dissipation of mechanical energy W can be found in terms of the 
power of internal forces. 

For an incompressible fluid 

W= PS*/2, (26) 

where S* is the strain-rate tensor in the suspension, with components given by the expres- 
sions 

. .  .~ o S0v~ V 2 y v  �9 
S~.~ - -  S~,~ ~ , ,  - g T  d , = --~, ~ -7- d(~, 

I ':~ O 

,~* 2 [Ov z 2 [' z 
~. = -r .~ ~ d r ,  = -r j v~-r- do, 

"V, a 

S ~ j = O  for i ~ i  (LJ  t,  2 ,3) ,  

(27) 

If the suspension is dilute (with rigid spheres as the suspended particles) and the dis- 
persion medium differs only slightly from a Newtonian fluid in its rheological properties, 
we can analyze the suspension in the quasi-Newtonian approximation, i.e., assume that its 
theological equation of state has the form 

19 -~ --pE -~- ~'eff ~z. (28) 

Then on the basis of expressions (26)-(28) we obtain an equation for the mechanical energy 
dissipation 

W = ~tef f [ I - -  249 -- (4!7)e(P In 49 + 0(e49) ]3q-'. (29) 

Comparing (29) with (25), we arrive at an expression for the effective viscosity of the in- 

vestigated suspension 

J 

Inasmuch as 
( i / 2 ) (n - t ) / 2  = 3(n--1) 2 qn--I  

i n  t he  g i v e n  f l o w ,  i t  f o l l o w s  f rom r e l a t i o n  (30) t h a t  a d i l u t e  s u s p e n s i o n  o f  r i g i d  s p h e r i c a l  
p a r t i c l e s  i n  a p o w e r - l a w  f l u i d  d i f f e r i n g  o n l y  s l i g h t l y  f rom a Newton ian  f l u i d  b e h a v e s  as  a 
power-law fluid with an effective consistency index 

meff ----- m(l -~ (5/2)49 -b {t'1/7)e49 In 49, 

As r § 0 the expression (30) for the effective viscosity of the suspension goes over to 
the expression for the effective viscosity of the dispersion medium 

Peff = m(//2) (n-i~/~ 

and for n = i (Newtonian dispersion medium) expression (30) gives the classical result of Ein- 

stein. 

i. 
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FLOW AND HEAT TRANSFER IN THE THEP4MOGRAVITATIONAL GENERATION MODE 

A. F. Polyakov UDC 532.517.4+536.24 

Experi~mntal investigations [1-3] of heat elimination in a turbulent descending fluid 
flow in vertical heated pipes under conditions of substantial influence of thermogravitation 
show that the Nusselt number grows monotonically with the increase in the Grashof number for 
a constant value of the Reynolds number. The analysis performed in [4] for the case of rela- 
tively weak influence of thermogravitation showed that the monotonic increase in the Nusselt 
number in this case is associated with the influence of lift forces on the turbulent trans- 
fer under conditions of unstable stratification of the density. The influence of thermo- 
gravitation results in an increase in turbulent transfer, in a more filled-out shape of the 
velocity and[ temperature profiles, in an increase in the friction drag and heat elimination. 
The nature of the flow is hence determined for all values of the Grashof number by the influ- 
ence of the thermogravitational forces on the turbulent transfer. The influence of the ther- 
mogravitational forces directly on the average flow (i.e., taking account of the lift forces 
in the average equation of motion) is substantially less than their influence on turbulence 
for relatively low values of the Grashof number, and this difference increases more and more 
with its growth. 

The expression in [4] for the coefficient of turbulent momentum transfer e, 

-~- = T T t + 4 1 R e a p  r PrT(dU+/dn) 2 (1 )  

was used for the case of smallness of the parameter taking account of the lift forces, i.e., 
when the second member in the square brackets is substantially less than one. Here ~ is the 
kinematic coefficient of viscosity; (e/v) T is the relative coefficient of turbulent momentum 
transfer in an isothermal flow; Gr = gSq d~/~ 2 is the Grashof number; Re, = v,d/v = Re~, 
Re = ~d/~ is the Reynolds number; ~ is thWe coefficient of volume expansion; g is the accelera- 
tion of gravity; qw is the thermal-flux density at the wall; d is the pipe diameter (char- 
acteristic dimension); % is the coefficient of thermal conductivity; v, = ~ is the dy- 
namic velocity; T w is the tangential friction stress at the wall; 0 is the density; cf is the 
friction drag coefficient; u is the mean (characteristic) velocity with respect to the trans- 
verse section; Pr is the Prandtl number; Pr T is the turbulent Prandtl number; T + = (t w -- t)" 
flCpV,/qw is the dimensionless temperature; t is the temperature; t w is the wall temperature; 
Cp is the specific heat at constant pressure; ~ = v,y/~ is the dimensionless distance to the 
wall; y is the distance from the wall along the normal; U + = u/v, is the dimensionless veloc- 
ity; and u is the velocity parallel to the wall in the x direction. 

The second member in the square brackets in (i) characterizes the contribution of ther- 
mogravitation to the generation of turbulence as compared with generation because of the aver- 
age flow, and this member is considered substantially greater than the first term in this 
paper. This corresponds to the following physical situation when generation of turbulence 
by the thermogravitacional forces is substantially greater than generation by the average 
flow. We call such a mode the "thermogravitational generation mode." The forced average 
flow is hence accomplished because of an external circulation source. 

Equation (i) is written for the thermogravitational generation mode as 

s __ C Gr 1/4 (dT+ldh) i/a ( ~ ~ , 
Pr~  ~ Re* .Pri/r (dU+/d~) i/2 ~--v-}T (2) 
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